A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases.

نویسندگان

  • E Candi
  • E Tarcsa
  • J J Digiovanna
  • J G Compton
  • P M Elias
  • L N Marekov
  • P M Steinert
چکیده

We have addressed the question of how keratin intermediate filaments are associated with the cell envelope at the periphery of cornified epidermal cells. Many peptides from human epidermal cell envelopes containing isopeptide crosslinks inserted by transglutaminases in vivo have been characterized. A major subset involves the type II keratin chains keratin 1, 2e, 5, or 6 crosslinked to several protein partners through a lysine residue located in a conserved region of the V1 subdomain of their head domains. This sequence specificity was confirmed in in vitro crosslinking experiments. Previously the causative mutation in a family with diffuse nonepidermolytic palmar-plantar keratoderma was shown to be the loss in one allele of the same lysine residue of the keratin 1 chain. Ultrastructural studies of affected palm epidermis have revealed abnormalities in the organization of keratin filaments subjacent to the cell envelope and in the shape of the cornified cells. Together, these data suggest a mechanism for the coordination of cornified cell structure by permanent covalent attachment of the keratin intermediate filament cytoskeleton to the cell envelope by transglutaminase crosslinking. Furthermore, these studies identify the essential role of a conserved lysine residue on the head domains of type II keratins in the supramolecular organization of keratin filaments in cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins

In epidermal cells, keratin intermediate filaments connect with desmosomes to form extensive cadherin-mediated cytoskeletal architectures. Desmoplakin (DPI), a desmosomal component lacking a transmembrane domain, has been implicated in this interaction, although most studies have been conducted with cells that contain few or no desmosomes, and efforts to demonstrate direct interactions between ...

متن کامل

Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation

Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regul...

متن کامل

Molecular biology of keratinocyte differentiation.

Epidermal keratinocytes (skin cells) are highly specialized epithelial cells designed to perform a very specific function, separation of the organism from its environment. To accomplish this the cells synthesize precursors and assemble them into two distinct structures, the cornified envelope and keratin intermediate filaments. The intermediate filaments are assembled from keratin monomers and ...

متن کامل

Tailless keratins assemble into regular intermediate filaments in vitro.

To study the influence of the non alpha-helical tail domain of keratins in filament formation, we prepared a truncated keratin 8 mutant, K8/tailless. Using site-directed in vitro mutagenesis we introduced a stop codon in the position coding for amino acid number 417 of the K8/wild-type sequence, thereby deleting 86 amino acids of the non alpha-helical tail domain but leaving the consensus seque...

متن کامل

A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity

Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 1998